

第二十屆中国图象图形学学会青年科学家会议

Not All Pairs are Equal: Hierarchical Learning for Average-Precision-Oriented Video Retrieval

Yang Liu¹, Qianqian Xu^{2,*}, Peisong Wen^{1,2}, Siran Dai⁴, Qingming Huang^{1,2,3,*}

1 School of Computer Science and Technology, University of Chinese Academy of Sciences 3 BDKM, University of Chinese Academy of Sciences 2 Institute of Computing Technology, Chinese Academy of Sciences 4 Institute of Information Engineering, Chinese Academy of Sciences



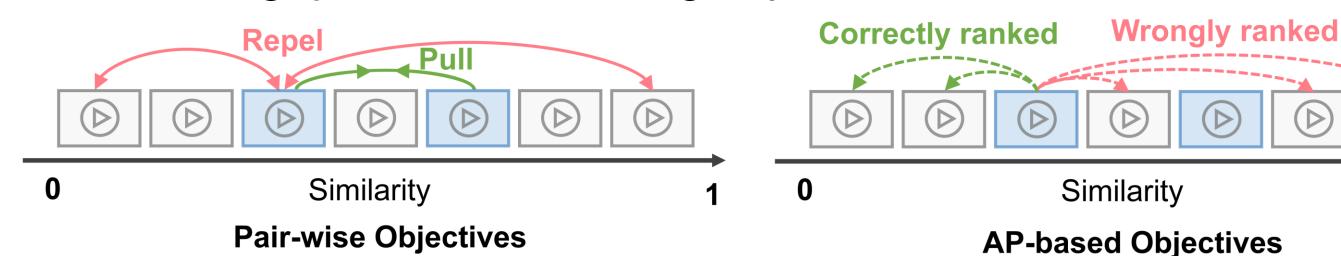
Alignment of the Objective with the Metric

☐ Evaluation Metric: Average Precision (AP)

- > Evaluates the overall rankings of relevant videos $AP = \frac{1}{n} \sum_{i=1}^{n} \frac{i}{r_i}$ > Assigns larger weights on higher-ranked instances
- ☐ Previous Training Objectives: Pair-wise Objectives
- > Pull the positive instances closer and repel the negative ones
- × Treat all mis-ranked pairs equally
- × Mismatch with the evaluation metric

■ New Training Objectives: AP-based Objectives

- > Rectify the wrongly ranked positive-negative pairs in the list
- ✓ Fill the gap between training objectives and evaluation metrics



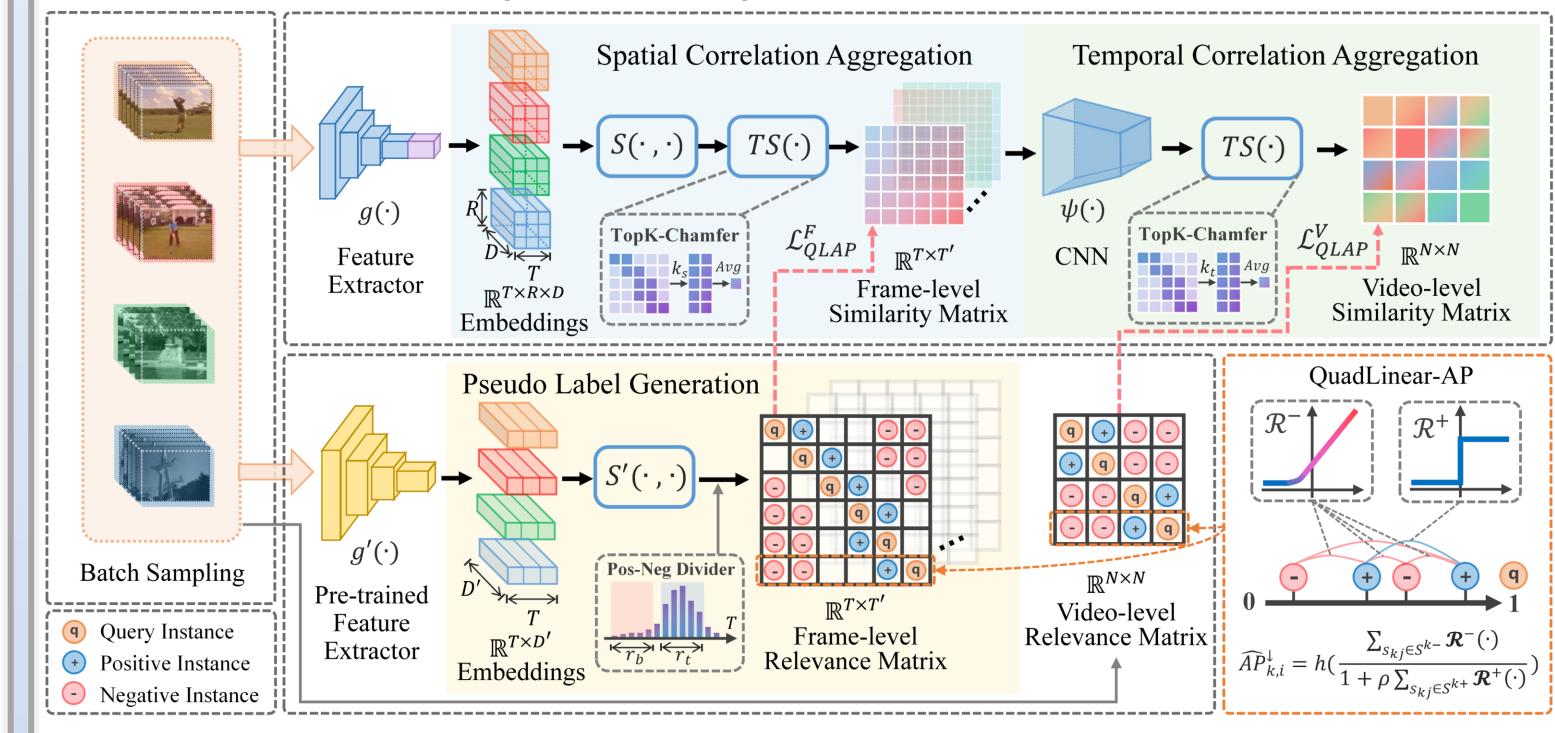
☐ Two Challenges for Video-Oriented AP Optimization

- Current AP losses are suboptimal for video-level retrieval
- Noisy frame-level matching leads to a biased AP estimation

Hierarchical Learning Framework

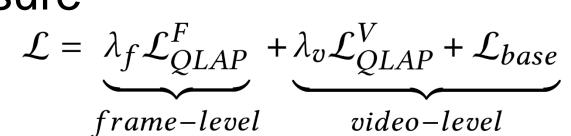
□ Overall Framework: HAP-VR

Hierarchical learning for Average-Precision-oriented Video Retrieval



☐ Video-Oriented AP Optimization Algorithm

- > Step1: Bottom-up video similarity measure
- > Step2: Pseudo-label generation
- > Step3: Hierarchical AP optimization



Gradient-Enhanced AP Optimization

☐ Optimization Problem:

- Maximizing the AP score $\max_{f} AP(f) = \frac{1}{N} \sum_{k=1}^{N} AP_{k}(f)$
- **□** Objective Reformation:
- Minimizing the AP risk $\min_{f} AP^{\downarrow}(f) = \frac{1}{N} \sum_{k} AP_{k}^{\downarrow}(f)$

$$\mathcal{R}(s, \mathbf{S}) = 1 + \sum_{s' \in \mathbf{S}} \mathcal{H}(s' - s)$$

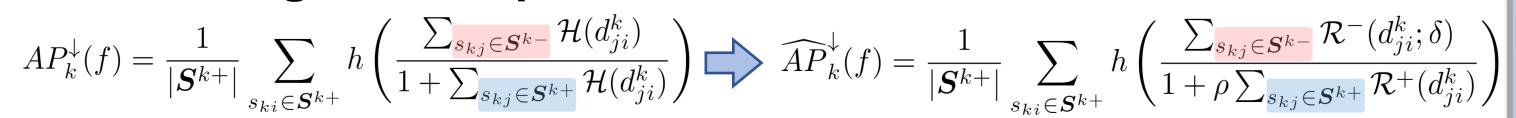
$$d_{ji}^k = s_{kj} - s_{ki} \quad h(x) = \frac{x}{1+x}$$

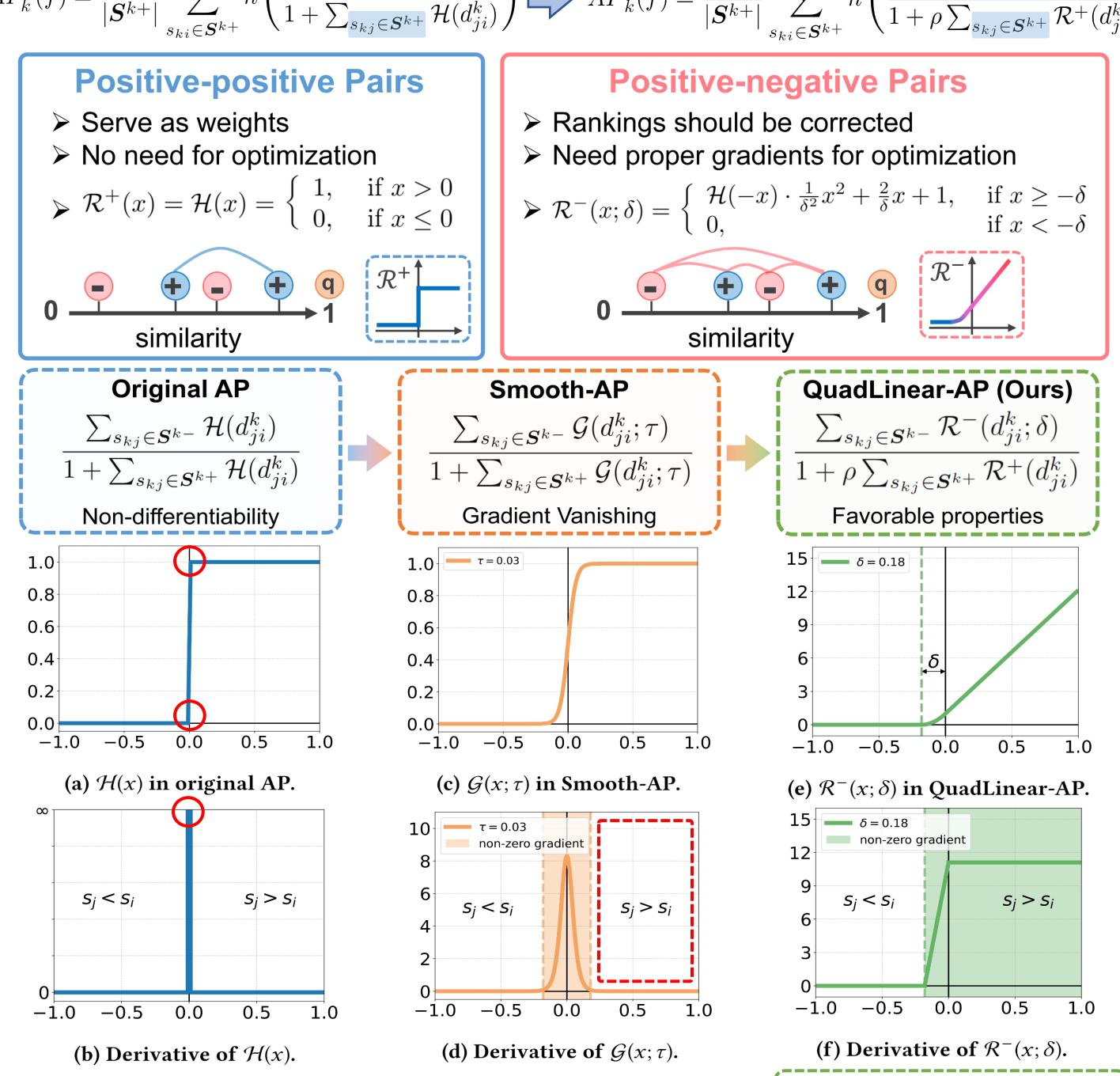
$s_{ki} \in S^{k+}$
$= \frac{1}{ \mathbf{S}^{k+} } \sum_{s_{ki} \in \mathbf{S}^{k+}} \frac{1 + \sum_{s_{kj} \in \mathbf{S}^{k+}} \mathcal{H}(d_{ji}^k)}{1 + \sum_{s_{kj} \in \mathbf{S}^{k+} \cup \mathbf{S}^{k-}} \mathcal{H}(d_{ji}^k)}$
$AP_k^{\downarrow}(f) = 1 - \frac{1}{ \mathbf{S}^{k+} } \sum_{s_{ki} \in \mathbf{S}^{k+}} \frac{1 + \sum_{s_{kj} \in \mathbf{S}^{k+}} \mathcal{H}(d_{ji}^k)}{1 + \sum_{s_{kj} \in \mathbf{S}^{k+} \cup \mathbf{S}^{k-}} \mathcal{H}(d_{ji}^k)}$
$= \frac{1}{ \mathbf{S}^{k+} } \sum_{s_{ki} \in \mathbf{S}^{k+}} \frac{\sum_{s_{kj} \in \mathbf{S}^{k-}} \mathcal{H}(d_{ji}^k)}{1 + \sum_{s_{kj} \in \mathbf{S}^{k+} \cup \mathbf{S}^{k-}} \mathcal{H}(d_{ji}^k)}$
$= \frac{1}{ \boldsymbol{S}^{k+} } \sum_{s_{k,i} \in \boldsymbol{S}^{k+}} h\left(\frac{\sum_{s_{k,j} \in \boldsymbol{S}^{k-}} \mathcal{H}(d_{ji}^k)}{1 + \sum_{s_{k,j} \in \boldsymbol{S}^{k+}} \mathcal{H}(d_{ji}^k)}\right)$

 $\sum_{s_{k,i} \in S^{k-}} \mathcal{R}^-(d)$

 $AP_k(f) = \frac{1}{|S^{k+}|} \sum_{\mathbf{R}(s_{ki}, S^{k+})} \frac{\mathcal{R}(s_{ki}, S^{k+})}{\mathcal{R}(s_{ki}, S^{k+} \cup S^{k-})}$

□ Rethinking the Components of AP Risk: QuadLinear-AP





□ Favorable Properties of QuadLinear-AP

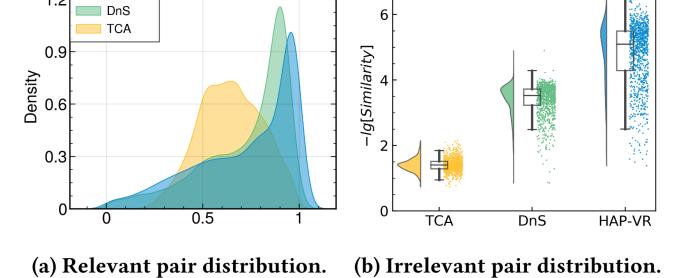
- Differentiable AP optimization
- > Suitable gradients for low AP area
- > Continuous, Smooth, and Convex Monotonically increasing (non-strictly)
- Upper bound of Heaviside function

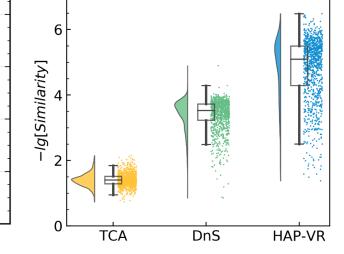
Evaluation Results

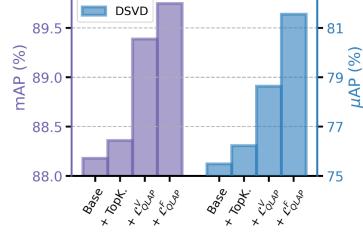
☐ Overall Performance of Our Proposed HAP-VR

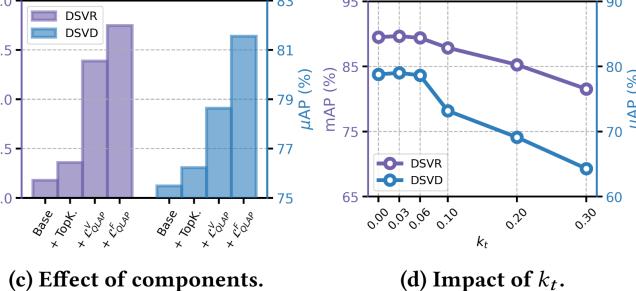
HAP-VR improves mAP and μ AP effectively on multiple tasks

	Label	Trainset	Retrieval (mAP)					Detection (µAP)				
Method			EVVE	SVD	FIVR-200K			EVVE	SVD	FIVR-200K		
					DSVR	CSVR	ISVR	EVVE	310	DSVD	CSVD	ISVD
\mathbf{DML}^{\dagger} [32]	✓	VCDB ($C\&\mathcal{D}$)	61.10	85.00	52.80	51.40	44.00	75.50	/	39.00	36.50	30.00
\mathbf{TMK}^{\dagger} [46]	✓	internal	61.80	86.30	52.40	50.70	42.50	/	/	/	/	/
TCA [53]	\checkmark	VCDB(C&D)	63.08	89.82	86.81	82.31	69.61	76.90	56.93	69.09	62.28	49.24
ViSiL [†] [30]	\checkmark	VCDB(C&D)	65.80	88.10	89.90	85.40	72.30	79.10	/	75.80	69.00	53.00
DnS (S_a) [34]	\checkmark	DnS-100K	65.33	90.20	92.09	87.54	74.08	74.56	72.24	79.66	69.51	54.20
DnS (S_b) [34]	✓	DnS-100K	64.41	89.12	90.89	86.28	72.87	75.80	66.53	78.05	68.52	53.48
\mathbf{LAMV}^{\dagger} [2]	X	YFCC100M	62.00	88.00	61.90	58.70	47.90	80.60	/	55.40	50.00	38.80
\mathbf{VRL}^{\dagger} [24]	X	internal	/	/	90.00	85.80	70.90	/	/	/	/	/
$\mathbf{ViSiL}_f^{\dagger}$ [30]	X	ImageNet	62.70	/	89.00	84.80	72.10	74.60	/	66.90	59.50	45.90
S^2VS [33]	X	$\mathrm{VCDB}(\mathcal{D})$	67.17	88.40	92.53	87.73	74.51	80.72	65.04	86.12	77.41	63.26
HAP-VR (Ours)	X	$\mathrm{VCDB}(\mathcal{D})$	69.15	89.00	92.83	88.21	74.72	82.88	67.87	88.41	79.85	64.79





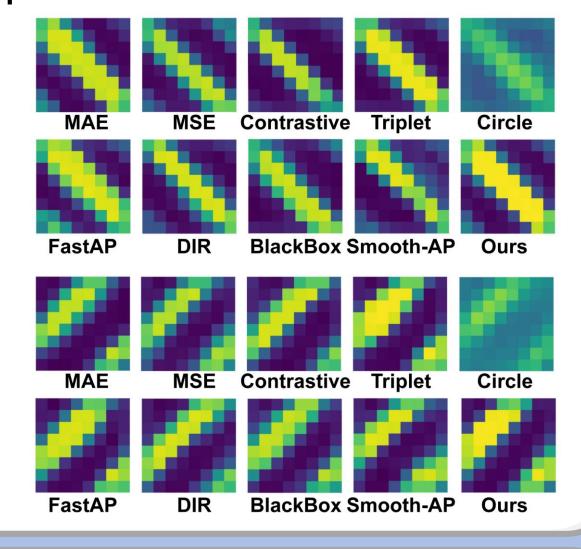




☐ Effectiveness of Our Proposed QuadLinear-AP

QuadLinear-AP outperforms previous pair-wise/AP-based losses

T	Retr	rieval (m	AP)	Detection (µAP)				
Losses	DSVR	CSVR	ISVR	DSVD	CSVD	ISVD		
MAE	89.07	88.03	80.86	78.08	75.69	65.26		
MSE	89.22	88.26	80.80	78.66	76.07	65.44		
Contrastive [18]	88.67	88.09	80.97	75.12	74.23	67.41		
Triplet [50]	88.11	87.77	81.21	72.94	73.18	69.23		
Circle [55]	87.53	86.11	78.77	73.26	71.15	59.33		
FastAP [6]	89.30	88.42	81.16	78.83	77.51	69.95		
DIR [47]	89.65	88.57	80.64	78.50	76.22	65.42		
BlackBox [45]	89.70	88.55	80.53	80.07	77.37	66.00		
Smooth-AP [4]	89.36	88.33	80.73	79.85	77.75	68.42		
QuadLinear-AP (Ours)	90.80	89.68	81.31	82.92	80.03	71.45		



Conclusions

- ☐ Methodologically: Propose a self-supervised framework (HAP-VR) for video retrieval to bridge the gap of the objective and metric.
- ☐ Analytically: Introduce a gradient-enhanced AP surrogate loss (QuadLinear-AP) and design a hierarchical learning strategy for AP optimization on both video and frame levels.
- ☐ Empirically: Experimental results demonstrate the effectiveness of our proposed framework on various video retrieval tasks.

